Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 13, 2025
-
Proceedings of the 29th International Conference on DNA Computing and Molecular Programming (DNA 29)Chen, Ho-Lin; Evans, Constantine G. (Ed.)Discrete chemical reaction networks formalize the interactions of molecular species in a well-mixed solution as stochastic events. Given their basic mathematical and physical role, the computational power of chemical reaction networks has been widely studied in the molecular programming and distributed computing communities. While for Turing-universal systems there is a universal measure of optimal information encoding based on Kolmogorov complexity, chemical reaction networks are not Turing universal unless error and unbounded molecular counts are permitted. Nonetheless, here we show that the optimal number of reactions to generate a specific count x ∈ ℕ with probability 1 is asymptotically equal to a "space-aware" version of the Kolmogorov complexity of x, defined as K̃s(x) = min_p {|p|/log|p| + log(space(𝒰(p))) : 𝒰(p) = x}, where p is a program for universal Turing machine 𝒰. This version of Kolmogorov complexity incorporates not just the length of the shortest program for generating x, but also the space usage of that program. Probability 1 computation is captured by the standard notion of stable computation from distributed computing, but we limit our consideration to chemical reaction networks obeying a stronger constraint: they "know when they are done" in the sense that they produce a special species to indicate completion. As part of our results, we develop a module for encoding and unpacking any b bits of information via O(b/log{b}) reactions, which is information-theoretically optimal for incompressible information. Our work provides one answer to the question of how succinctly chemical self-organization can be encoded - in the sense of generating precise molecular counts of species as the desired state.more » « less
-
Embedding computation in biochemical environments incompatible with traditional electronics is expected to have a wide-ranging impact in synthetic biology, medicine, nanofabrication, and other fields. Natural biochemical systems are typically modeled by chemical reaction networks (CRNs) which can also be used as a specification language for synthetic chemical computation. In this paper, we identify a syntactically checkable class of CRNs called noncompetitive (NC) whose equilibria are absolutely robust to reaction rates and kinetic rate law, because their behavior is captured solely by their stoichiometric structure. In spite of the inherently parallel nature of chemistry, the robustness property allows for programming as if each reaction applies sequentially. We also present a technique to program NC-CRNs using well-founded deep learning methods, showing a translation procedure from rectified linear unit (ReLU) neural networks to NC-CRNs. In the case of binary weight ReLU networks, our translation procedure is surprisingly tight in the sense that a single bimolecular reaction corresponds to a single ReLU node and vice versa. This compactness argues that neural networks may be a fitting paradigm for programming rate-independent chemical computation. As proof of principle, we demonstrate our scheme with numerical simulations of CRNs translated from neural networks trained on traditional machine learning datasets, as well as tasks better aligned with potential biological applications including virus detection and spatial pattern formation.more » « less
-
Lakin, Matthew R.; Sulc, Petr (Ed.)Life is built upon amazingly sophisticated molecular machines whose behavior combines mechanical and chemical action. Engineering of similarly complex nanoscale devices from first principles remains an as yet unrealized goal of bioengineering. In this paper we formalize a simple model of mechanical motion (mechanical linkages) combined with chemical bonding. The model has a natural implementation using DNA with double-stranded rigid links, and single-stranded flexible joints and binding sites. Surprisingly, we show that much of the complex behavior is preserved in an idealized topological model which considers solely the graph connectivity of the linkages. We show a number of artifacts including Boolean logic, catalysts, a fueled motor, and chemo-mechanical coupling, all of which can be understood and reasoned about in the topological model. The variety of achieved behaviors supports the use of topological chemical linkages in understanding and engineering complex molecular behaviors.more » « less
An official website of the United States government

Full Text Available